Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4253-4256, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086588

RESUMO

Body Surface Potential Mapping is the spatial high-resolution acquisition of cardiac electrical activity from the thorax surface. The method is used to record more comprehensive cardiac information than conventional ECG measurement approaches. Although Body Surface Potential Mapping is well-known and is technically feasible, it is rarely used in clinical environments. One reason for this is the cumbersome procedure of a measurement. The placement of many adhesive gel electrodes and the contacting with many cables are particularly problematic. These limit both patients and medical staff. Therefore, the goal of this work is to technically simplify Body Surface Potential Mapping so that it would be applicable under clinical conditions. For this purpose, we present a new measurement approach in which only a narrow elastic belt is placed around the thorax to measure the electrical activity of the heart. This belt is equipped with an array of reusable gold-plated dry electrodes. With these dry electrodes, the differential voltages are measured in the horizontal and vertical directions. Afterwards, an approximation of the geometrical potential distribution on the thorax is obtained from these measurements. The results are then visualized as videos or image series or used for further analysis. A subject measurement demonstrates the applicability of this novel approach. It is shown that the obtained Body Surface Potential Maps are very similar to those found in the literature, despite a reduced spatial measurement range. This approach is not only applicable for clinical applications but also suitable for monitoring during physiological training.


Assuntos
Mapeamento Potencial de Superfície Corporal , Tórax , Mapeamento Potencial de Superfície Corporal/métodos , Eletrodos , Humanos
2.
Laryngoscope ; 132(12): 2412-2419, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35133015

RESUMO

OBJECTIVES/HYPOTHESIS: The laryngeal adductor reflex (LAR) is an important protective mechanism of the airways. Its physiology is still not completely understood. The available methods for LAR evaluation offer limited reproducibility and/or rely on subjective interpretation. A new approach, termed Microdroplet Impulse Testing of the LAR (MIT-LAR), was recently introduced. Here, the LAR is elicited by a droplet and a laryngoscopic high-speed recording is acquired simultaneously. In the present work, image-processing algorithms for autonomous MIT-LAR sequence analysis were developed. This allowed the automated approximation of kinematic LAR parameters in humans. STUDY DESIGN: Development and testing of computational methods. METHODS: Computational image processing enabled the autonomous estimation of the glottal area, the glottal angle, and the vocal fold edge distance in MIT-LAR sequences. A suitable analytical representation of these glottal parameters allowed the extraction of seven relevant LAR parameters. The obtained values were compared to the literature. RESULTS: A generalized logistic function showed the highest average goodness of fit among four different analytical approaches for each of the glottal parameters. Autonomous sequence analysis yielded bilateral LAR response latencies of (229 ± 116) ms and (182 ± 60) ms for cases of complete and incomplete glottal closure, respectively. The initial/average/maximum angular vocal fold adduction velocity was estimated at (157 ± 115) °s-1 /(891 ± 516) °s-1 /(929 ± 583) °s-1 and (88 ± 53) °s-1 /(421 ± 221) °s-1 /(520 ± 238) °s-1 for complete and incomplete glottal closure, respectively. CONCLUSION: The automated extraction of LAR parameters from laryngoscopic high-speed sequences can potentially increase the objectiveness of optical LAR characterization and reduce the associated workload. The proposed methods may thus be helpful for future research on this vital reflex. LEVEL OF EVIDENCE: NA Laryngoscope, 132:2412-2419, 2022.


Assuntos
Laringe , Humanos , Reprodutibilidade dos Testes , Laringe/fisiologia , Reflexo/fisiologia , Prega Vocal , Laringoscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...